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ABSTRACT

The impact-damped oscillator in free decay is
studied by using time history solutions. A large range
of oscillator amplitude is covered. The amount of
damping is correlated with the behavior of the impact-
ing mass. There are three behavior regimes: (1) a low
amplitude range with less than one impact per cycle and
very low damping, (2) a useful middle amplitude range
with a finite number of impacts per cycle, and (3) a
high amplitude range with an infinite number of impacts
per cycle and progressively decreasing damping. For
light damping the impact damping in the middle range
is (1) proportional to impactor mass, (2) additive to
proportional damping, (3) a unique function of vibra-
tion amplitude, (4) proportional to l-e, where ¢ is
the coefficient of restitution, and (5) very roughly
inversely proportional to amglitude. The system exhi-
bits jump phenomena and period doublings. An impactor
with 2 percent of the oscillator's mass can produce a
loss factor near 0.1.

NOMENCLATURE
A nondimensional oscillator amplitude

a coefficient of sine term in oscillator displace-
ment

b coefficient of cosine term in oscillator displace-
ment

c proportional damping constant

d total gap between impactor and cavity walls
k oscillator spring constant

m oscillator mass

T average nondimensional oscillator period with

impactor present (= 2x Vl + 4)

T; period for approximately repetitive motion of
impactor

nj

time

time of impact

time of zero crossing of oscillator displacement
oscillator displacement

oscillator velocity

oscillator acceleration

initial oscillator displacement for a time inter-
val between impacts

initial oscillator velocity for a time interval
between impacts

oscillator velocity immediately before an impact
oscillator velocity immediately after an impact

displacement of impactor relative to oscillator

velocity of impactor relative to oscillator

jmpactor relative velocity immediately before
impact

impactor relative velocity immediately after
impact

coefficient of restitution
viscous damping ratio of oscillator

Joss factor ((2r)-1 times fraction of energy
lost to damping per cycle)

loss factor due to impact damping only

impactor mass ratio (impactor mass divided by
oscillator mass)



¢i phase of an impact, measured in degrees from
most recent zero crossing of oscillator

wp  undamped natural frequency of oscillator
wg damped natural frequency of oscillator
INTRODUCTION

The impact damper has been studied for several
decades (Popplewell, et al. (1983), Masri (1970), Bapat
and Sankar (1985), and references therein) because it
produces substantial damping for its mass and because
it is effective over a wide frequency range. There is
extensive literature on the related topics of impacts
in systems with mechanical clearance such as pinned
joints, gear trains, cams, and pistons (see for
example Bapat, et al. (1983) and references therein).
The impact-damped system is a linear system only
between impacts, and closed form solutions of its
motion are not obtainable. Before the advent of large
computers, most of the progress in predicting the
forced response of the damper was made by searching for
steady-state solutions with special characteristics and
by examining the stability of the solutions. These
methods have been supplemented by analogue and digital
time-history solutions. The focus of the time-history
solutions has tended to remain on steady-state forced
response and on limited ranges of oscillator amplitude.

The present study is motivated by a desire to add
damping to very lightly damped aerospace systems that
undergo forced or self-excited vibration (flutter).
The inherent loss factor (fraction of vibrational
energy dissipated per radian) is often less than 0.0l
and sometimes below 0.001. Small additions to damping
in these systems could greatly increase component life
or, by relieving design constraints imposed to avoid
excessive vibration, could permit performance gains or
weight savings.

Besides providing damping predictions for these
systems, the focus on light damping in free decay
reveals features of impact damper behavior that are not
observable in more heavily damped systems because any
given range of amplitude is traversed more rapidly.

In this study the mass of the impacting particle
(impactor) is at most 4 percent of the oscillator mass,
and the loss factor is usually less than 0.1.
Extremely light impactors (0.001 percent of the pri-
mary mass) are used to explore Timiting behavior.

The study of free decay is perhaps not, in itself,
as important as the study of forced response, and a
thorough response study should be made before applying
impact dampers in aerospace systems. However, a free
decay study has value in this nonlinear problem for
several reasons. First, there are features of the
behavior of the impactor in free decay which carry over
into forced behavior but which are less easily recog-
nized there because of the complexity and diversity of
behavior. Secondly, a single transient decay can eli-
cit a range of impact behavior from beiow one to an
infinite number of bounces per cycle and an amplitude
range covering over two orders of magnitude. On the
other hand, behavior in narrow ranges of amplitude can
be studied in detail by using very light impactors.
Finally the results have intrinsic value in showing the
rate of recovery from a transient disturbance.

DECAY CALCULATIONS

A simple harmonic oscillator damped by an impactor
in a cavity is represented in figure 1, The equations
of motion and their snlutions, presented in the appen-
dix, are simple in any interval between successive
impacts. The impacts are modeled by assuming that a
coefficient of restitution exists, and the equations
that relate the velocities before and after impacts
appear in the appendix. The equations are made dimen-
sionless by using the cavity gap d as the length
unit, the primary mass m as the mass unit, and the
reciprocal (in sec/radian) of the undamped natural fre-
quency wp of the harmonic oscillator as the time
unit. A FORTRAN computer code was written to calculate
time historjes of the motion and several other func-
tions of time (described in the appendix). The system
is completely specified by the mass fraction u of the
impactor, the coefficient of restitution e, the pro-
portional damping ratic z of the oscillator (stem-
ming from viscous, material or structural damping) and
the initial conditions of motion. Proportional damp-
ing was included to see how it interacts with impact
damping in the nonlinear system, The influence of ini-
tial conditions on the results was not explored; the
oscillator was released without velocity from its ini-
tial amplitude.

Decay curves of the nondimensional amplitude A of
the oscillator for ¢ = 0.6 are shown in figure 2.
Values of u are 1, 2, and 4 percent, and there is
0.01 percent of critical viscous damping in the oscil-
lator system. The slopes of the curves show that the
impact damping increases as the amplitude decreases,
except near the low-amplitude end of each curve. Also
shown for the u = 1 percent curve are keys to
figures 3 and 4, which present short segments of the
impactor motion to show representative impact patterns
that occur at various amplitudes. In figure 3 the
impactor displacement is shown relative to its cavity
walls, located at relative displacements of the impac-
tor of 0 and 1. In figure 4 absolute displacements of
the impactor and of the walls are shown. Note the
variety of impact patterns. These include (some not
shown in the figures) equal numbers of impacts on each
side (figs. 3(b), 4(a) and 4(b)), an even number on one
side and an odd number on the other (fig. 3(c)), and
patterns that repeat only after two or more cycles. At
oscillator amplitudes above ~5 the number of impacts on
each side of the cavity becomes infinite, as for a ball
bouncing to rest, but the time elapsed during such a
"bounce-down" is finfte, A typical case is shown in
figure 3(a). Slower decay occurs below an amplitude
of about 0.05 because the impactor lacks enough speed
to traverse the cavity in less than one cycle, as shown
in figure 4{c). This range will be called the range of
impact failure.

The reason for high damping for amplitude on the

“order of a few tenths of the cavity gap can be seen in

figure 4(b). At the amplitude illustrated there, the
impactor travels several times as far as the oscilla-
tor, hence it has a higher velocity. It acquires this
velocity through impacts on an advancing wall. At the
amplitude where maximum damping occurs, the impactor
velocity is approximately five times the maximum veloc-
ity of the oscillator. In the restitution model, a
fraction of the relative velocity is lost at each
impact. Thus the high relative velocity due to impacts
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on an advancing wall is responsible for the high
damping.

Previous authors have noted the wide variety of
impact behavior in this and related systems in both
analytical and experimental studies of forced response
(Masri (1970}, valuswami, et al (1975), Popplewell et
al. (1983), Bapat, et al. {1983), and Bapat and Senkar
(1985)). The present study provides a unifying 1imit-
ing case for a number of previous studies because
inside an oscillator undergoing free decay under suffi-
ciently light damping, the motion of the osciilator is
essentially unperturbed. Hence in the 1ight damping
limit the distinction between the harmonic oscillator
and a housing driven in sinusoidal motion vanishes.
Similarly the distinction between forced response and
of free decay through the same amplitude range van-
ishes. Thus two important connections can be made
between the present results and published work on
impactors in driven housings (Bapat, et al. (1983)) and
in forced harmonic oscillators with 1ight damping
(Masri (1970), and Popplewell, et al. ?1983)).

There remain some questions of how closely the
impactor behavior in free decay corresponds to that in
forced response or in the driven housing. It is known
that two impact patterns can be stable under the same
conditions in a driven housing (Bapat, et al. (1983)).
Yet the behavior of the impactor in an oscillator in
free decay is uniquely determined by the initial condi-
tions, and hence only a single behavior (i.e. impact
pattern) is possible during the pass through any given
amplitude. (However, other initial conditions may
yield a different behavior at the given amplitude.)

On the other hand in a freely decaying oscillator, the
impactor passes through complex and possibly even chao-
tic states which may not exist in a steady state and
which stability theory could not predict. For example
in the transitions between regular impact patterns dur-
ing oscillator decay, a very light impactor passes
through a large array of impact patterns that approxi-
mate the “"long-period" (and possibly chaotic) behavior
found possible by previous authors studying impact sys-
tems (see for example, Shaw (1985). Thus one-to-one
correspondence of impactor behavior in a decaying
oscillator with that in a forced oscillator or in a
driven housing is not expected. In spite of these
unexplored questions of correspondence between free
decay, forced response, and driven housings, a consid-
erable degree of correspondence in impactor behavior

is shown, and the loss factor calculations for free
decay have value for feasibility studies.

LOSS FACTOR RESULTS

Figure 2 presented decay curves of the oscillator
amplitude for three values of u. The loss factors,
computed from those decays by using the amplitudes in
five successive cycles to smooth fluctuations (see the
appendix), are presented in figure 5 as functions of
the amplitude. As expected from the slopes of the
curves in figure 2, the loss factor increases as the
amplitude decreases, until amplitude is between 0.05
and 0.1, In this range impact failure occurs and the
damping drops abruptly toward the proportional damping
value. Erratic bounces still occur, sometimes causing
a temporary increase in the cscillator energy and
amplitude. The averaging process used in calculating
the loss factor reduces the height and broadens the
damping peaks in figure 5 because very low values from

the impact failure range are mixed in. This effect is
greater for larger u.

Note the considerable similarity of the curves in
figure 5. ODividing the loss factor by u reduces the
curves very nearly to a single curve, as shown in
figure 6. (Aside from the peak region affected by
averaging, the main visible differences occur at the
highest amplitude (lowest damping) and arise from the
proportional damping. These can be removed as shown
below.) Thus for u up to 4 percent, the impact loss
factor per unit mass fraction of the impactor, hence-
forth called the specific loss factor, is a constant
at any given amplitude. This is to be expected for
very light damping where the impactor barely perturbs
the oscillator motion. The energy dissipated in an
impact and hence the loss factor are then proportional
to the impactor mass. A portion of the specific loss
factor curve for u = 0.25 percent is included as a
dashed line to show the approximate shape that the peak
of the curves would have without averaging. (For the
lighter impactor, the slower decay yields more oscilla-
tor cycles in any amplitude range. The effects of
averaging are thus more localized.)

Figure 7 presents the loss factor curves for a
single mass fraction, 2 percent, but for various values
of proportional damping ¢. Curves for proportional
damping ratios ¢ between 0.01 and 0.8 percent are
shown. To find out whether the total damping is a sim-
ple sum of impact and proportional damping, the loss
factor corresponding to the proportional damping was
subtracted from each curve. (Note that loss factor
n and viscous damping ratio ¢ are related by
n = 2¢.) The results, divided by the impactor mass
fraction to yield specific impactor loss factor, are
plotted in figure 8. The curves are almost identical,
justifying the ordinate label of specific “impactor
loss factor," and showing that the proportional damping
in the main oscillator and the impact damping are addi-
tive in the 1ight damping regime. Thus a single uni-
versal function of amplitude describes the specific
impactor loss factor. This universality applies only
to various values of mass fraction and of proportional
damping, however; a change of the coefficient of resti-
tution produces a new function, as is shown later.

Over a substantial portion of the universal impac-
tor damping curve (fig. 8) the impactor damping appears
to vary roughly inversely with ampiitude. To show to
what extent this is true, the specific impactor loss
factor multiplied by the amplitude is plotted in
figure 9. Over the amplitude range between 0.1 and 10,
the curves lie within #30 percent of 0.34. That is,

Anj/u = 0.34 (1£0.3) (0.1 <A< 10, ¢ = 0.6)

where ny s the loss factor due to the impactor.

.This equation provides an estimate of impact damping

over a wide amplitude range. Note that the bounce-down
range is made more visible in this type of plot. It

is the range of predominantly negative slopes above the
maxima near A = 5,

The approximate constancy of Anj/u leads to a
characteristic of the impact damped oscillator noted
in previous experimental and analytical studies, namely
the near-linear decay of amplitude with time (see,
e.g., Bapat and Sankar (1985)). Since the loss factor
ny is proportional to the amplitude decay rate



divided by A, then if Any {s roughly constant, the
decay rate must be roughly constant,

Results presented up to this point have been for
¢ = U.6, a value within the range for steel-on-stee)
impacts (0.5 to 0.8), (Higdon and Stiles (1955)). To
show the general effect of changing ¢, the impactor
loss factor is presented in figure 10 for three values
of ¢, 0.4, 0.6, and 0.8. It is seen that reducing
¢ raises the impact damping in the middle range of
amplitude. But bounce-down ends at lower amplitudes
for lower ¢, and the amplitude below which impact
failure occurs rises as ¢ falls. It appears that
Anj/u may be linear with 1n(A) and independent of
¢ in the bounce-down range. As e increases the
damping curve becomes more erratic in most ranges of
amplitude. It also appears from figure 10 that within
the active range of the impactor the damping is roughly
proportional to (1 ~ €). This 1s shown to be the case
in figure 11 where the ordinate variable is
Ani/{u(l -~ ¢)). Unfortunately the fluctuations in
the ¢ = 0.8 curve are magnified by a factor of 5 by
dividing by (1 -~ ¢).

IMPACT PHASE, PERIOD DOUBLING, POSSIBLE CHAOS, AND JUMP
PHENOMENA

The impact pattern of the impactor in a freely
decaying oscillator becomes more definite and has
richer detail {if the total damping (viscous plus
impact) is reduced to allow slower passage through each
amplitude. A number of interesting features of such a
slow decay can be brought out by plotting the time of
each impact during a half cycle as a function of the
oscillator amplitude. Remnants of many features can
then be identified in similar plots for faster decays.
In these plots it is convenicnt to use the oscillator
phase angle (measured in degrees from the oscillator
zero crossing) as the measure of time, as described in
the appendix.

Figure 12 presents a plot of impact phases for
p = 0.001 percent. This extremely 1ight impactor
barely perturbs the oscillator. (The value of ¢
was chosen to yield the desired record length.) The
very slow decay encompasses about 1900 oscillator
periods and nearly 8000 impacts. Each impact is repre-
“sented by an open circle in the figure, but where the
impactor motion becomes repetitive, the circles merge
into smooth bold lines. With reference to plots like
those in figures 3 and 4, one can identify the impact
patterns that occur in each amplitude range. A single
jmpact at the same phase in each half cycle occurs for
A < 0.35. Similarly two impacts per half cycle,
repeated every half cycle, occur for 1.2 < A < 1.4;
three for 2.4 < A < 2.6; and four for 3.4 < A < 3.55.
At the high amplitude end of each of these regions
(i.e., at A = 0.35, 1,4, 2.6, and 3.55), each phase
line splits into two branches. The number of impacts
per oscillator cycle does not change at these points,
but rather the impacts occur at different phases in
successive half cycles. The density of impact points
along each branch is thus half of that on the coalesced
curve., To the left of the splits, the smallest
“period" Tj for repetitive behavior of the impact
phase is 186 , or half of the oscillator period T.
To the right of the splits the impact phase period T;
is 360 and is thus equal to T. Most of the split
phase lines can be followed to another split at a
higher amplitude {e.g., at A = 1.57, 2,73, and 3.65),
where T; becomes 720  or 2T. And by expanding the
scales, at least one additional phase "period doubling"
can be seen in some cases. Period doubling is known to

he one route to chaos (bounded, nonperiodic motion).
This raises the question {beyond the scope of this
study) of whether there is a chaotic region between
every adjacent pair of orderly impact regimes. Chaos
does occur in an impactor mounted with 8 spring and
proportional damping in a driven housing {Shaw (1985).

in a nonlinear system where more than one state
of motion exists for a given set of parameters, jumps
between the states can occur as some parameter is
slowly changed. Here jumps between states of differing
impact periodicity can occur with amplitude changes.
Such jumps can be seen by comparing an impact phase
graph for free decay with one taken from a calculation
in which the amplitude is made to grow with time by
specifying a negative value of the viscous damping
ratio for the primary oscillator. {Negative values of
viscous damping can be used to describe self-excited
oscillations such as flutter.) Two phase graphs so
obtained are shown in figures 13(a) and (b?. In both
figures u = 0,001 percent and i1g1 = 0.02 percent, but
¢ is negative in (b). Note the tendency of the
impactor in each case to maintain trends of its impact
pattern. For example during growth the condition of
two equally spaced impacts per cycle (denoted by Ze)
persists to A = 0.4, wnereas in decay that pattern
sets in only below 0.36,

The regions of regular impactor behavior in

figure 13 can be compared with the regions of stable
impactor behavior inside a housing driven at various
steady sinusoidal amplitudes presented in Bapat et al.
(1983). Stable impact regimes for ¢ = 0.6 from that
paper are shown in figures 13{a) and (b) denoted by
asterisks. The boundaries of the 2e region in decay
are very close to those of Bapat et al. (1983). The
phases of the impacts in the 2e region agree very
well with those predicted from the analysis in that
paper. In the region of two unequally spaced impacts
per cycle (denoted by 2u for the present calculations
and by 2u* for data from Bapat et al. (1983)), the
phase from that paper, figure 4 agrees with the phase
of the earlier of the two impacts of the present
results below about A = 0.4, but there the Bapat et
al. (1983) phase turns upward. The regions of three
impacts per oscillator period (labeled as above), show

reater differences. For example in both growth
?fig. 13(b)) and decay (fig. 13(a)) there are regions
marked 8,3 in which there are eight impacts in three
cycles (with two impacts in the first cycle, three in
the second and three in the third). Other more irregu-
lar impact patterns are present in 0.79 < A < 0.88, but
three impacts per oscillator period are the most com-
mon. Clearly during growth and decay, periodic behav-
ior is only approximated, and various impact patterns
occur in transitions that may not be stable in a steady
state.

Figure 13(a) also shows some period doublings.
At A = 0.35 two unequally spaced impacts per cycle
become two equally spaced impacts, hence the impact
period above A = 0.35 is twice that below. In the
region above A = 0.48, where three impacts per cycle
predominate, the range 0.48 < A < 0.53 has an impact
phase period equal to the oscillator period T. From
A = 0.53 to 0.64 the impact phase period is 2T. A
small region around A = 0.65 has an impact phase
period of 4T.

At higher values of impactor mass fraction, the
grosser features of the impact phase graphs are main-
tained, but detail is lost because fewer impacts occur
per unit range of amplitude. With faster decay the




identifiable features shift toward lower amplitude.
Figure 14 shows impact phase for u = 0.02 and

¢ = 0.0001 over the amplitude range up to 10.
Doublings of impact phase period are still visible for
1 through 6 impacts per half cycle. The doubling at

A = 1.4 in figure 12 has shifted to near A =« 1.3. The
range where bounce-down occurs {A > 5) is included in
figure 14, and in that range an additional phase point
is plotted when the impactor is thrown free at a phase
near 180°. This region has received 1ittle attention
in the literature on impact dampers. It was discussed
as a special case under the term translated as "slip-
page* in Fedosenko and Feigin (1971) and references
therein. It is not a favorable regime for impact damp-
ing; the impactor loss factor is two orders of magni-
tude lower than at the peak near A = 0.1,

CONCLUDING REMARKS

The damping produced by a relatively light impac-
tor (~1 to 4 percent of the oscillator mass) is sub-
stantial in comparison to the levels inherently present
in many turbomachinery components. Whereas the inher-
ent loss factors for blades often lie between 0.001 and
0.7, even a 2 percent impactor mass fraction can yield
an impact loss factor of 0.1 at the most effective
amplitude and above 0.01 over a wide amplitude range.
Thus the possibility of significant flutter suppression
and of order-of-magnitude reductions in resonant vibra-
tion exists for applications where impactors can be
designed to work near their optimum amplitude range.
The small mass required may permit the use of combina-
tions of impactors with different gaps to afford high
damping over wide ranges of amplitudes.

Some aspects of forced response of impact damped
systems (e.g., small amplifications of motion when the
oscillator is driven at a frequency below its natural
frequency) are not illuminated by these free decay
results. But near resonance, where most vibration
problems are of practical importance, the free decay
results have reasonable predictive value. Furthermore,
the free decay results directly show the rate of recov-
ery from excitation by a short transient disturbance.

Frequency tuning, which 1imits the effectiveness
of the tuned vibration absorber to the vicinity of ghe
resonance for which it is designed, is not present in
the impact damper. However, it is replaced by what
might be called amplitude tuning; the effectiveness of
impact damping is a very strong function of amplitude,
being highest when the amplitude is about 10 percent
of the impactor gap for e = 0.6, falling off abruptly
at lower amplitudes and falling roughly inversely with
amplitude at higher amplitudes.

The origin of the highest damping, obtained when
one impact occurs in each half cycle, was shown to lie
in the high velocity of the impactor caused by the
occurrence of the impacts when the oscillator is
advancing toward the impactor.

Several factors permit approximate prediction of
impact damping in the light damping regime. Impact
damping is (1? directly additive to the proportional
damping of the oscillator, (2) proportional to the
impactor mass, {3) roughly proportional to {1 - ¢) in
the "active" regime for the impactor, and (4) (for a
very rough approximation) approximately inversely pro-
portional to amplitude.

The dependence of impact damping upon amplitude
was shown to be correlated with the impact pattern.

The graphs of impact phase as a function of amplitude
i1luminated the impact patterns in considerable detail
and showed examples of period doubling, evidence of
possible chaotic behavior and the existence of jump
phenomena,
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APPENDIX - DERIVATION OF EQUATIONS

Between two successive impacts the equations of
motion are simply those of a damped harmonic oscillator
and of a free particle. Well separated bounces are
treated by assuming that a coefficient of restitution
exists. A separate procedure is used for a “bounce
down," as discussed below. When the particle is at
rest on a wall the equation of motion is that of a
damped harmonic oscillator with increased mass. A
second special situation occurs when the stuck impactor
is thrown free of the main oscillator.

Motion Between Well-Separated Impacts

The equation of motion of the oscillator with mass

.m, spring constant k and proportional damping con-

stant ¢ s
s(;*'ZCwn)‘("'wrz‘Xs 0 (1)

where wj = Vk/m is the undamped natural frequency
and ¢ = c/(2mw,) is the viscous damping ratio.
One form of the solution is

-gw t

x = (asinot *bcoswt)e n (2)

where we take time t equal to zero at the most recent

impact, and wg = wp VI - ¢2 is the damped natural



frequency. If the oscillator displacement and velocity
immediately after that impact are xo and x4, then
the constants a and b are given by

b =
o (3)

a = (xg * xgtun) /g

Between impacts the impactor has a constant
velocity.

Equations for Well-Separated Impacts
In the restitution model

Y+ = - §. (4)

If the velocities of the oscillator before and after
an impact are x_ and x+, then conservation of
total momentum requires

Xo *u(Xe * y4) =0 * ulx_*+y) (5)

By using (4) to eliminate y+ from (5), we obtain
ko= k_+tu(l*e)y /(1 + ) (6)

The value of y+ from (4) is the initial impactor
relative velocity for the new time interval. The value
of x+ from equation (6) becomes the initial veloc-
ity X, of the oscillator during the new interval

and is used to determine the new value of the constant
a in equation (3). The positions of the two masses are
unchanged by the impact, because the impact is assumed
to occur in an infinitesimal increment of time.

The time of impact is obtained by calculating the
relative displacement of the impactor at regular small
time intervals until impact occurs. Then the impact
time is found to the desired accuracy by the method of
bisection.

Impactor Bouncing to Rest Relative to the Oscillator
The impactor can come to reTative rest on either
wall of the cavity in a finite time with an infinite
number of bounces. This happens at high oscillator
amplitudes A (A > 5 for ¢ =0.6 and u < 8 percent).
The solution of the equations interval-by-interval
described above must be abandoned during bounce-down
because of the infinite number of time intervals. The
finite+time to come to relative "rest" can be estimated
if the acceleration X of the oscillator is fairly
constant during the bounce-down process. Infinite sums
giving the total time to come to rest and the remaining
impulse transferred to the oscillator can be evaluated
in closed form. However, this is not accurate when the
bounce-down approaches an oscillator phase near 180°,
which occurs during free decay just before the system
leaves the bounce-down regime (near A = 5 in fig. 14).
The present results do not utilize the infinite sums.
Instead the impacts were followed until the time
between them was deemed suitably short and then the
next bounce was assumed to occur with zero restitution,
initiating a "stuck" condition. A similar method of
treating bounce-down is presented by Soller (1985) with
details of nondimensionalizing the equations of motion

and their solutions. After bounce-down is complete,
the two masses move as one as long as the impactor is
stuck.

Stuck Impactor
The equation of motion and its solution for the

combined system of the oscillator and the impactor are
of the same forms as for the oscillator alone. Several
of the constants must be changed to reflect the
increase in mass by the factor (1 + u).

Sling-Free of Stuck Impactor

"~ The stuck impactor remains on a cavity wall as
long as the oscillator acceleration is toward the
impactor. When the acceleration changes sign, the
impactor is thrown free. In the absence of damping and
forcing in the oscillator system, this would occur at
the equilibrium position of the oscillator, but with
either present the exact time of the acceleration sign
change must be found. This time was found in the same
way as for impact times.

Use of Dimensionleés variables

lated from

To facilitate computations and to obtain results
in a %enera1 form, the equations were put in nondimen-
sional form. The cavity gap d 1is the unit of length.
The mass m of the oscillator is the mass unit and in
terms of it the impactor mass “is the mass fraction .

The time unit is wgl, the reciprocal of the

undamped natural frequency. The undamped period of
oscillation is 2n 1in the absence of the impactor, and
the damped period is negligibly different for the small
values of ¢ wused herein. With an impactor present
the period is slightly irregular when the impact pat-
tern does not repeat in s ssive cycles, but its
average value is Zn'VZl + u), except in the impact
failure range.

Calculation of Loss Factor and Impact Phase

The loss factor 1s defined as the fraction of
vibrational energy dissipated per radian. It is also
twice the fraction of amplitude decrease per radian in
a free decay. (Note that for u = 0, one radian is one
unit of nondimensional time, but for u > 0, one radian
of actual motion spans + u nondimensional time
units. The amplitude was calculated every half cycle.
A least squares parabolic fit of the amplitudes in five
successive cycles was used tc determine the decay rate
and the loss factor. This smoothing procedure was used
because some impact patterns cause considerable fluc-
tuations of amplitude.

The phase of the impacts during a half cycle was
measured from the time ty of the most recent zero
crossing of the oscillator displacement. The phase
¢. of any impact, measured in degrees was calcu-

1
9 = 180° (t'i _ to)/('nVI + ) (7)

where tj and ty, are nondimensional times. The

use of (7) gives the phase compared to an average
period.
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(A) AMPLITUDE. ~5.6; INFINITE NUMBER OF IMPACTS EACH HALF CYCLE.
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(B> AMPLITUDE., ~2.6: THREE IMPACTS EACH HALF CYCLE.
FIGURE 3. - IMPACTOR DISPLACEMENT SHOWN RELATIVE TO CAVITY WALLS.
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FIGURE 5. - AVERAGED TOTAL LOSS FACTOR AS A FUNCTION
OF AMPLITUDE FOR THREE VALUES OF THE IMPACTOR MASS
FRACTION. ¢ = 0.0001; € = 0.6; p =1 PERCENT:
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FIGURE 7. - TOTAL LOSS FACTOR FOR SEVERAL VALUES OF
PROPORTIONAL DAMPING IN THE MAIN OSCILLATOR SYSTEM.
M = 2 PERCENT; € = 0.6; g = .01 PERCENT; 0.1 PERCENT.
0.2 PERCENT: 0.4 PERCENT AND 0.8 PERCENT.
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SPECIFIC IMPACTOR LOSS FACTOR
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AMPLITUDE x (SPECIFIC IMPACTOR LOSS FACTOR)
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FIGURE 9. - AMPLITUDE TIMES SPECIFIC IMPACTOR LOSS FACTOR AS A
FUNCTION OF AMPLITUDE. p= 2 PERCENT: g = 0.01 PERCENT:
0.1 PERCENT; 0.2 PERCENT: 0.4 PERCENT: AND 0.8 PERCENT.
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FIGURE 10. - AMPLITUDE TIMES SPECIFIC IMPACTOR LOSS FACTOR
FOR THREE VALUES OF THE COEFFICIENT OF RESTITUTION.
pu=0.02; 4 0.0001: €= .4: .6 AND .8,
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AMPLITUDE x (SPECIFIC IMPACTOR LOSS FACTOR)/(1-€)
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FIGURE 11. - AMPLITUDE TIMES SPECIFIC IMPACTOR LOSS FACTOR
DIVIDED BY (1-€) FOR THREE VALUES OF THE COEFFICIENT OF
RESTITUTION. p= 0.02: Z= 0.0001: €= 0.4: 0.6 AND 0.8.
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FIGURE 12, - IMPACT PHASE (MEASURED FROM OSCILLATOR ZERO
CROSSING) AS A FUNCTION OF OSCILLATOR AMPLITUDE.
p=0.00001: z = 0.00025: € = 0.6.
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